skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banik, Arnob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates three types of foam core materials used in composite sandwich structures at various densities: H60, H100, F50, F90, PN115, PN200 and PN250. Three-point bending test is conducted to determine relationships between material and flexural properties at both room and low temperature Arctic conditions. X-ray micro-computed tomography is utilized to observe the microstructural relationships between foam density and mechanical properties of the core. This study evaluates Arctic temperature effects on mechanical properties for various types of foam core at varying densities with the intention for future Arctic applications. Although foam core materials become more brittle at a lower temperature, their flexural stiffness and flexural strength are further increased. However, due to the enhanced brittleness, the energy required for fracture is significantly reduced at low temperature conditions. This study utilizes statistical analysis to create contour plots and linear regression equations to predict flexural properties as a function of temperature and foam density. Molecular dynamics simulation is employed to verify experimental results to elucidate the effect of temperature on material behavior. This work provides a deeper understanding of how flexural strength relates to foam density, adding to existing data on foam strength properties under compressive, shear and tensile loads. 
    more » « less